ERATOSTENE

Indice (TOC)
  1. 1.

Eratostene Nato nel 276 a.C a Cirene (Libia)
Morto nel 194 a.C. ad Alessandria d'Egittera era un astronomo, matematico e filosofo greco, studiò ad Atene e fu il successore di Apollonio Rodio nella direzione della biblioteca di Alessandria. Abile ricercatore matematico, diede contributi fondamentali alla scienza del suo tempo. Nel campo dell'Aritmetica è famosa l'invenzione del "crivello di Eratostene", utilizzato per la ricerca dei numeri primi, realizzò il primo strumento di calcolo (mesolabio) per trovare meccanicamente la media proporzionale tra due segmenti dati.         

Eratostene fondò la cronologia storica, determinando

la prima data sicura della storia greca con quella della caduta di Troia (1184-3 a.C.); il suo sistema si basava sulla lista delle Olimpiadi ed introdusse l'uso di numerare i singoli anni durante il periodo di ogni olimpiade.

Egli, applicando metodi matematici ed astronomici allo studio della Geografia, sostenne l'ipotesi della sfericità della Terra e per primo calcolò con buona approssimazione la lunghezza del meridiano terrestre (250.000 stadi corrispondenti a Km. 46.250, circa km. 6.200 in eccesso rispetto al vero) misurando l'ombra proiettata da un'asta verticale a mezzogiorno del solstizio d'estate in due località (Alessandria e Siene) situate  sullo stesso meridiano.  

l procedimento è il seguente: si scrivono tutti i naturali a partire da 2 fino n in un elenco detto setaccio (in programmazione spesso l'elenco è implementato da un array). Poi si cancellano (setacciano) tutti i multipli del primo numero del setaccio (escluso lui stesso). Si prosegue così fino ad arrivare in fondo. I numeri che restano sono i numeri primi minori od uguali a n.

È come se si utilizzassero dei setacci a maglie via via più larghe: il primo lascia passare solo i numeri non multipli di 2, il secondo solo i non multipli di 3, e così via.

Nel caso n = 50, ad esempio, il procedimento di setacciatura si conclude con il numero 7 perché 7 è il massimo primo il cui quadrato non supera 50 e si può provare che il procedimento di setacciatura per ricercare i primi fino ad un certo numero n cessa sempre quando si supera la radice quadrata di n. Infatti ogni numero a del setaccio iniziale, contenente tutti i numeri naturali non superiori ad un dato n, cade dal setaccio che corrisponde al più piccolo dei suoi divisori primi.


[1]Animazione del crivello

[2]

Etichette
Visualizzato commento 2 di 2 : vedi tutti
bello !!!
Inviato 17:37, 15 Mag 2013 ()
non è vero
Inviato 11:53, 5 Giu 2013 ()
Visualizzato commento 2 di 2 : vedi tutti
E' necessario connettersi per inserire un commento.