L'assonometria (dal greco áxon = asse e métron = misura, cioè misura in base agli assi) è un metodo di rappresentazione grafica trattato dalla geometria descrittiva. Fu introdotta dal francese Gaspard Monge alla fine del Settecento.

Il principio alla base dell'assonometria è la proiezione di un oggetto geometrico su un piano (piano di proiezione o quadro), lungo la direzione determinata da un punto improprio (retta di proiezione o centro di proiezione). Una caratteristica dell'assonometria è di poter rappresentare contemporaneamente tre facce di uno stesso parallelepipedo rettangolo.

Un'assonometria viene detta ortogonale oppure obliqua a seconda che la direzione di proiezione sia o meno ortogonale al piano di proiezione. Inoltre, a seconda delle riduzioni assonometriche, ovvero del riscalamento dovuto alla proiezione, delle tre rette del sistema di riferimento (unità di misura), un'assonometria può essere isometrica (o monometrica), dimetrica oppure trimetrica.

 

Assonometria cavaliera

 

L'assonometria cavaliera, così denominata perché attribuita a Bonaventura Cavalieri, insigne matematico e allievo di Galileo Galilei, è un tipo di assonometria obliqua in cui uno dei tre piani del sistema di riferimento è parallelo al piano di proiezione (detto anche quadro). Viene detta militare o frontale a seconda che il piano di proiezione sia orizzontale (xy) o verticale (xz o yz).

Siccome due assi del sistema di riferimento xyz sono paralleli al quadro, le loro proiezioni ne mantengono vera forma e misura. Un'assonometria cavaliera può essere quindi solo isometrica o dimetrica. L'assonometria cavaliera isometrica si ha quando la direzione del centro di proiezione è inclinata di 45 gradi rispetto al quadro.

L'assonometria cavaliera viene utilizzata di frequente a motivo della sua facilità di costruzione.

Le immagini prodotte dall'assonometria cavaliera risultano però innaturali per l'occhio umano. Per questo motivo si usa ridurre (solitamente di metà) le misure relative all'asse perpendicolare al quadro. Un'assonometria cavaliera che non utilizza la riduzione della altezza, né della minima profondità, viene detta rispettivamente Cavaliera militare rapida o Cavaliera frontale rapida.

 

 

Assonometria isometrica

 

Un'assonometria è detta isometrica quando gli assi formano tutti e tre angoli uguali e quindi hanno la stessa riduzione assonometrica. Il termine "assonometria isometrica" viene spesso usato per indicare l'assonometria ortogonale isometrica. In questo caso si ha che il triangolo delle tracce è un triangolo equilatero e che i tre piani del sistema di riferimento (xy, zx, yz) formano lo stesso angolo con il piano di proiezione.In particolare per un corretta esecuzione, preso come riferimento l'asse verticale y, bisogna tracciare un asse x inclinato di 120° rispetto all'asse verticale che guardi verso destra e un asse z inclinato di 120° rispetto all'asse verticale che guardi verso sinistra.


 

ecco un esempio(non è ben chiaro)

Etichette
Visualizzato commento 10 di 10 : vedi tutti
la spiegazione è chiara chi l'ha scritta????
come esempio magari si potrebbe mettere qualche nostra tavola!!!!!!
Inviato 20:28, 20 Feb 2012 ()
Il problema è fotocopiarla
Inviato 15:24, 21 Feb 2012 ()
no ma la scanneriziamo ....
ci provo
Inviato 19:43, 21 Feb 2012 ()
scannerizzandola è come se fosse un formato immagine quindi non bisognerebbe avere problemi....
Inviato 19:50, 21 Feb 2012 ()
ho provato a eseguire lo scanner ma legge soltanto la figura più calcata
mentre le proiezioni no perchè sono disegnate troppo leggere
Inviato 19:54, 21 Feb 2012 ()
ho scurito l'immagine ora si capisce qualcosa (non tanto)
ma è discreta(non sono riuscito a fare di meglio)
Inviato 20:01, 21 Feb 2012 ()
bella tavola
Inviato 11:32, 22 Feb 2012 ()
coma si fa a a scurire le tavole?????????????????
Inviato 11:32, 22 Feb 2012 ()
DEVI AVERE UN PROGRAMMA PER LE FOTO CHE TI PERMETTE DI MODIFICARLE(PIZAP NON VA BENE)COSI PUOI REGOLARE IL CONTRASTO E LA LUMINOSITà DELL'IMMAGINE
CIAO
Inviato 20:55, 22 Feb 2012 ()
PERò DEVI PRIMA SCANNERIZZARLA
Inviato 20:55, 22 Feb 2012 ()
Visualizzato commento 10 di 10 : vedi tutti
E' necessario connettersi per inserire un commento.